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Quasi-one-dimensional cavitating nozzle flows are considered by employing a homo-
geneous bubbly liquid flow model. The nonlinear dynamics of cavitating bubbles
is described by a modified Rayleigh–Plesset equation that takes into account bub-
ble/bubble interactions by a local homogeneous mean-field theory and the various
damping mechanisms by a damping coefficient, lumping them together in the form of
viscous dissipation. The resulting system of quasi-one-dimensional cavitating nozzle
flow equations is then uncoupled leading to a nonlinear third-order ordinary dif-
ferential equation for the flow speed. This equation is then cast into a nonlinear
dynamical system of scaled variables which describe deviations of the flow field from
its corresponding incompressible single-phase value. The solution of the initial-value
problem of this dynamical system can be carried out very accurately, leading to an
exact description of the hydrodynamic field for the model considered.

A bubbly liquid composed of water vapour–air bubbles in water at 20◦C for
two different area variations is considered, and the initial cavitation number is
chosen in such a way that cavitation can occur in the nozzle. Results obtained,
when bubble/bubble interactions are neglected, show solutions with flow instabilities,
similar to the flashing flow solutions found recently by Wang and Brennen. Stable
steady-state cavitating nozzle flow solutions, either with continuous growth of bubbles
or with growth followed by collapse of bubbles, were obtained when bubble/bubble
interactions were considered together with various damping mechanisms.

1. Introduction
Hydrodynamic cavitation, i.e. formation of bubbles by incipient nucleation followed

by the growth and collapse structures of bubbles in a flowing liquid, is a formidable
problem. The subject matter arises in many engineering applications such as cavitation
in hydraulic machinery, the flow around a cavitating hydrofoil or propeller blade,
etc. It is also of considerable interest in physics, chemistry and biology because of
the various phenomena that arise owing to the growth and collapse of bubbles. The
subject is most frequently investigated experimentally; however, it is usually difficult to
transfer data obtained from a model in an experimental facility to real size. Sometimes,
it may even be difficult to compare results of identical experimental configurations (e.g.
see Knapp, Daily & Hammitt 1970; Hammitt 1980; Young 1989). Thus, hydrodynamic
cavitation can be taken to be unsteady and statistical in nature. For this reason, it
is usual to consider simplified models, which are often solvable numerically, to
gain some understanding about the phenomena. Cavitating flows in ducts and in
converging–diverging nozzles seem to be the simplest configurations for analysis.
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Nozzle flow characteristics for isothermal frictionless bubbly flow of a barotropic
mixture were first considered by Tangren, Dodge & Seifert (1949) and a discussion of
such flows can be found in the works of Wallis (1969), van Wijngaarden (1972) and,
more recently, Brennen (1995). Steady flows of bubbly liquids through a converging-
diverging nozzle have also recently been considered by Ishii et al. (1993) by assuming
that the gas pressure inside the bubble is the same as the ambient fluid pressure
(there, bubble dynamics is neglected). For cavitating nozzle flows it is essential to
consider bubble dynamics together with the equations of nozzle flow. A homoge-
neous two-phase bubbly mixture model that couples spherical bubble dynamics, as
described by the classical Rayleigh–Plesset equation, to the flow equations was pro-
posed by van Wijngaarden (1968, 1972) and was used for investigating shock wave
structure in bubbly liquids (e.g. see Noordzij & van Wijngaarden 1974; Kameda &
Matsumoto 1995). Schulz (1995; also briefly discussed in Schnerr et al. 1995) has
considered cavitating nozzle flows in one and two dimensions in this model with
and without bubble/flow interactions using a numerical method. Only recently have
Wang & Brennen (1997, 1998) used this model to investigate numerically bubble/flow
interactions of cavitating flows in a converging–diverging nozzle using real fluid prop-
erties and considering damping mechanisms by a damping coefficient in the form of
viscous dissipation. Their results show that bubble/flow interactions have important
effects on the confined flow field. They consider steady flow, and find two different
flow regimes: a quasi-statically unstable flow, which they call flashing flow; and a
quasi-statically stable flow with a ringing structure of growth and collapse of bubbles
downstream of the throat.

The purpose of this investigation is to analyse quasi-one-dimensional cavitating
nozzle flows by constructing a model with spherical bubble dynamics. For this
reason, a modified Rayleigh–Plesset equation that takes into account bubble/bubble
interactions by a slightly modified local homogeneous model of Kubota, Kato &
Yamaguchi (1992) and that treats the various damping effects, by lumping them
together in the form of viscous damping by a damping coefficient, is derived. The
ambient pressure of the bubbles is set equal to the local value of the mixture pressure
(see van Wijngaarden 1968). The resulting system of the model equations is then
uncoupled and a nonlinear third-order ordinary differential equation for the flow
speed is obtained. By appropriate scaling, this equation is cast into a nonlinear
dynamical system of scaled variables which represent deviations of the flow speed
and its derivatives from their incompressible single-phase values. The solution of the
initial-value problem of this dynamical system then leads to the exact solution of
quasi-one-dimensional cavitating nozzle flows in this model.

A bubbly liquid composed of water vapour–air bubbles in water at 20◦C with
two different area variations is considered and the initial cavitation number is chosen
in such a way that cavitation can occur in each nozzle. Results obtained when
bubble/bubble interactions are neglected show stable solutions with limited growth
and collapse of bubbles (stable non-cavitating flows) with maximum radius smaller
than the Blake radius, as reasoned in appendix C, for certain values of the speci-
fied parameters. For most of the cases investigated without taking into account-
bubble/bubble interactions, the initial-value problem of the model equations leads to
blow-up solutions with flow instabilities. These instabilities can be overcome by taking
into account bubble/bubble interactions and various damping effects simultaneously
leading to stable steady-state cavitating nozzle flow solutions either with continuously
growth of bubbles or with growth of bubbles followed by collapse at the nozzle
exit.
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2. Model equations for quasi-one-dimensional cavitating nozzle flows
We consider the quasi-one-dimensional cavitating flow of a bubbly liquid through a

converging–diverging nozzle with axial coordinate x′ and cross-sectional area A′(x′), as
shown in figure 1. We use the averaged equations for a bubbly flow (van Wijngaarden
1968; Wang & Brennen 1998), the averages being carried out in a volume with
mesoscopic lengthscale containing many bubbles centred about the macroscopic
position (for details see Biesheuvel & van Wijngaarden 1984). Moreover, all bubbles
inside this volume are assumed to be spherical in shape with the same bubble radius
R′. We assume steady flow, a constant viscosity model for the mixture and no slip
between the phases. The quasi-one-dimensional nozzle flow equations for such a
mixture then take the form (e.g. see Wang & Brennen 1997, 1998)

ρ′ = ρ′` (1− β), (1)

ρ′ u′ A′ = constant, (2)

ρ′ u′
du′

dx′
= −dp′

dx′
+ 4

3
µ′m

d2u′

dx′ 2
− P

′

A′
τ′w (3)

and

β =
4
3
πR′ 3 n′0

1 + 4
3
πR′ 3 n′0

= 4
3
πR′ 3 N ′. (4)

In the above equations p′, ρ′, u′ and β are, respectively, the mixture pressure, the
mixture density, the mixture velocity and the void fraction, ρ′̀ is the liquid density
(assumed to be constant), µ′m is the mixture viscosity (herein taken as the same as the
liquid viscosity µ′̀ ), R′ is the bubble radius, P′ is the wetted perimeter of the nozzle
(for a plane two-dimensional nozzle P′ is twice the depth of the nozzle), τ′w is the
absolute value of the wall shear stress, N ′ is the concentration of bubbles per unit
volume of the mixture and n′0 is the conveniently defined concentration of bubbles
per unit volume of flowing liquid. In particular n′0 is related to N ′ by

n′0 =
N ′

1− β = constant. (5)

Equation (1) simply relates the mixture density ρ′ to the void fraction β in the
homogeneous flow model where it is implicit that ρ′i/ρ′̀ � 1 with ρ′i denoting the
density of the bubble content (gaseous phase plus vapour). Equation (2) is the
conservation of mass in steady nozzle flows whereas (3) is the momentum equation
in a nozzle with internal viscous dissipation and wall friction (e.g. see Wallis 1969).
Equation (4) defines the void fraction (e.g. see Brennen 1995). The above equations
(1)–(4) do not form a closed system unless they are supplemented by a microscopic
equation for bubble dynamics.

2.1. Spherical bubble dynamics: a modified Rayleigh–Plesset equation

A model for spherical bubble dynamics that couples the classical Rayleigh–Plesset
equation to equations (1)–(4) was first proposed by van Wijngaarden (1968, 1972) and
it has recently been employed by Wang & Brennen (1997, 1998) to investigate cavi-
tating flows through a convergent–divergent nozzle. In this model, each bubble grows
and collapses independently according to the classical Rayleigh–Plesset equation

p′i − p′
ρ′̀

= R′
d2R′

dt′ 2
+

3

2

(
dR′

dt′

)2

+
2 S ′

ρ′̀ R′
+

4 ν ′D
R′

dR′

dt′
, (6)
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Figure 1. Investigated nozzle geometries. Top: nozzle 1 investigated by Schulz (equation (86)).
Bottom: nozzle 2 investigated by Wang & Brennen (equation (87)).

where S ′ is the surface tension coefficient, p′i is the total bubble pressure (assumed
to be uniform throughout the bubble), d/dt′ denotes the total or material derivative
which reduces to u′ d/dx′ for steady flow and where the ambient pressure is set equal
to the local pressure p′. In (6), all of the damping mechanisms are lumped together
and represented by a single damping coefficient ν ′D = µ′D/ρ′̀ with µ′D replacing the
liquid viscosity µ′̀ . It can be argued that the introduction of the single coefficient ν ′D in
(6) to represent all of the damping mechanisms in the form of viscous damping is an
ad hoc assumption. As will be discussed in detail below, such a simplification does not
only stem from trying to achieve simplicity in analysis and computations, but is also
due to the lack of satisfactory knowledge of damping mechanisms (besides viscous
damping) for cavitating bubbles. Assuming that the bubble contains a contaminant
gas with partial pressure p′g together with the vapour with partial pressure p′v , the
total bubble pressure p′i can be taken as the sum of the partial pressures of the gas
and vapour (an ideal mixture of gases). With these in mind, the behaviour of the gas
in the bubble can be taken to be polytropic so that

p′i = p′v + p′g = p′v + p′g0

(
R′0
R′

)3k

, (7)

where k is the polytropic index ( k = 1 implies a constant bubble temperature
whereas k = γ, with γ denoting the isentropic exponent of the gas, would model
isentropic gas behaviour), R′0 is the initial radius of bubbles at the nozzle inlet and
p′g0, which in our case will be fixed by the mechanical equilibrium condition at the
nozzle inlet, is the initial partial gas pressure.

It has recently been shown by Wang & Brennen (1997, 1998) that van Wijngaarden’s
equations, given by (1)–(7) above, lead to flow instabilities in cavitating nozzle flows
for their chosen values of the damping coefficient ν ′D. Therefore, the ramification
of these instabilities has to be considered by modifying (6) for bubble dynamics.
This ramification should include bubble/bubble interactions, non-spherical bubble
shape, liquid compressibility and additional damping mechanisms such as thermal
behaviour of bubbles, acoustic radiation, etc. The simplified model, given above by
(1)–(7), neglects completely the effects of bubble/bubble interactions, non-spherical
bubble shape and liquid compressibility and it takes into account the effects of various
damping mechanisms by the single coefficient ν ′D. It is well known that spherical bubble
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dynamics is violated near boundaries (e.g. see Blake & Gibson 1987) and that liquid
compressibility can be significant in the collapse period (e.g. see Prosperetti & Lezzi
1986). For quasi-one-dimensional nozzle flows to be investigated herein, we will leave
out these effects to avoid complications in analysis with the expectation that these
effects will be secondary compared to those of bubble/bubble interactions and various
damping mechanisms. Therefore, we will modify (6) and (7) taking into account the
latter effects only. It is also worthwhile to note that the investigation of Chahine
& Duraiswami (1992) has shown that bubble/bubble interactions in a multi-bubble
cloud inhibit bubble growth while they enhance bubble collapse. Consequently, in
modifying (6) and (7), bubble/bubble interactions and various damping mechanisms
have to be considered separately.

In this study, we first employ the local homogeneous model introduced by Kubota
et al. (1992) to model bubble/bubble interactions. In this model bubble/bubble
interactions are taken into account within spherical bubbly clusters, each of radius
∆r′, as shown in figure 2. The total velocity potential at the centre O of a cluster
resulting from interactions with other bubbles within the cluster is∑

i

(
1

r′i
R′ 2i

dR′i
dt′

)
, (8)

where it is understood that the summation is carried out over all bubbles interacting
with the one at the centre. In (8), R′i is the radius of a bubble at a distance r′i (� R′i)
from the centre O (see figure 2). Using the local homogeneous assumption

∇
(∑

i

1

r′i
R′ 2i

dR′i
dt′

)
= 0, (9)

and assuming that all bubbles within the spherical cluster have the same radius R′,
the Rayleigh–Plesset equation (6) can be modified as

p′i − p′
ρ′̀

=
d

dt′

(
R′ 2

dR′

dt′
∑
i

1

r′i

)
+ R′

d2R′

dt′ 2
+

3

2

(
dR′

dt′

)2

+
2 S ′

ρ′̀ R′
+

4 ν ′D
R′

dR′

dt′
, (10)

to include bubble/bubble interactions in the model considered. By noting that the
number of bubbles interacting with the bubble at the centre inside a cluster of radius
∆r′ is

4
3
πN ′

[
(∆r′)3 − R′ 3] , (11)

the first term on the right-hand side of (10) can be written as

d

dt′

(
R′ 2

dR′

dt′
∑
i

1

r′i

)
≈ d

dt′

(
R′ 2

dR′

dt′
N ′
∫ ∆r′

R′

1

r′
4πr′ 2dr′

)

=
d

dt′

(
2πN ′

[
(∆r′)2 − R′ 2]R′ 2 dR′

dt′

)
. (12)

Until now, ∆r′ has been left arbitrary. At this stage we further assume that

∆r′ = ΛR′, (13)

where Λ = constant � 1 (the particular case where Λ = 1 yields single bubble
dynamics without bubble/bubble interactions, as described by the classical Rayleigh–
Plesset equation (6)). This assumption implies an interaction model for which the
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local number of bubbles within a cluster is proportional to the local volume of a
bubble, thereby, to the local void fraction β . This simple model is indeed reasonable
since bubble/bubble interactions become more significant for larger values of the
void fraction β. By substituting from (5), (12) and (13) into (10), we obtain a modified
Rayleigh–Plesset equation as

p′i − p′
ρ′̀

=

[
1 + 2

3
πn′0 (3Λ2 − 1)R′ 3

][
1 + 4

3
πn′0 R′ 3

] R′
d2R′

dt′ 2

+
3

2

[
1 + 8

3
πn′0(2Λ2 − 1)R′ 3 + 16

9
π2n′ 20 Λ

2R′ 6
][

1 + 4
3
πn′0R′ 3

]2 (
dR′

dt′

)2

+
2 S ′

ρ′̀ R′
+

4ν ′D
R′

dR′

dt′
, (14)

which reduces to the classical Rayleigh–Plesset equation for Λ = 1, the case where
bubble/bubble interactions are completely left out. We now show that the model
equation (14) for spherical bubble dynamics, which incorporates bubble/bubble in-
teractions as in the local homogeneous model of Kubota et al. (1992), is indeed in
qualitative agreement with the well-established result that bubble/bubble interactions
inhibit bubble growth, but they enhance bubble collapse (e.g. see Chahine & Durai-
swami 1992). We first note that bubble/bubble interactions are most significant in
regions near maximum bubble radius where d2R′/dt′ 2 < 0. The first and second terms
on the right-hand side of (14) for Λ � 1 are seen to be modified by the factors
[1 + (1/2)Λ2β] and [1 + (4/3)Λ2β], respectively, to linear order in β as compared to
the classical Rayleigh–Plesset equation (Λ = 1). Consequently, at any location near
maximum bubble radius with fixed flow variables, fixed bubble radius R′ and fixed
bubble growth or collapse velocity dR′/dt′, the increase in the second term should
balance the decrease in the first term on the right-hand side of (14), as compared
to the case where bubble/bubble interactions are left out. This implies that, at any
location, the absolute value of the radial deceleration d2R′/dt′ 2 will be greater when
bubble/bubble interactions are included. Thus, bubble/bubble interactions, as incor-
porated in (14), inhibit bubble growth (dR′/dt′ > 0) and enhance bubble collapse
(dR′/dt′ < 0).

Having considered bubble/bubble interactions, we now discuss the various damp-
ing mechanisms of nonlinear bubble dynamics and show how the single damping
coefficient ν ′D in (14) should be interpreted. The most common damping mechanisms
include thermal conduction through the gas, viscosity of the liquid and acoustic ra-
diation (bubble fission occurring after the first collapse, as discussed by Colonius,
Brennen & d’Auria (1998), should also be included). The problem of thermal conduc-
tion through the gas for small-amplitude gas bubbles was considered by Chapman &
Plesset (1971, see also the references therein). The problem has been treated rigorously
for gas bubbles undergoing nonlinear oscillations by Nigmatulin, Khabeev & Nagiev
(1981), Miksis & Ting (1984, 1987), Prosperetti, Crum & Commander (1988) and
Prosperetti (1991). All of these investigations consider the energy equation for the gas
inside the bubble and solve the coupled system of equations numerically under spec-
ified initial and boundary conditions. The results show that there is deviation from
the polytropic law of equation (7) demonstrating the strong influence of damping
from thermal conduction of the gas on bubble dynamics, which cannot be taken into
account by any crude model that avoids the use of the energy equation, in spite of the
fact that the uniformity of the gas pressure holds to a good approximation (for low
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Figure 2. Geometric configuration of bubbles for the mean-field bubble/bubble interactions within
a radius of influence ∆r′ (R′ is the bubble radius at the centre O and R′i is the radius of the ith
bubble located at a distance r′i from the centre).

bubble wall Mach numbers). In particular, Prosperetti et al. (1988) and Prosperetti
(1991) have simplified the mathematical formulation of the thermal conduction prob-
lem arriving at three coupled differential equations for the temperature, the radial
velocity and the pressure of the gas with appropriate initial and boundary conditions.
This model has also been applied by Watanabe & Prosperetti (1994) to explain the
structure of different types of shock observed in the experiments of Noordzij & van
Wijngaarden (1974). As mentioned by Prosperetti et al. (1988) and Prosperetti (1991),
the application of the model to cavitating bubbles should be taken very cautiously
since the model neglects the effects of the vapour within the bubble and assumes that
the bubble wall Mach number is small, a condition which may not be fulfilled in the
violent collapse stages of cavitating bubbles. Nevertheless, for cold liquids (e.g. for
water up to 50◦C) vapour effects can be shown to be negligible (see Prosperetti et al.
1988). At present, the model seems to be much more promising than a model that uses
a polytropic law for the gas behaviour together with a damping cofficient, in the form
of viscous dissipation, as in (14). The three differential equations of Prosperetti (1991)
for the temperature, the radial velocity and the pressure of the gas within the bubble
with appropriate initial and boundary conditions can then be solved simultaneously
at each location along the nozzle axis together with (1)–(5), (10) and (14) (in this
case the damping coefficient ν ′D of (14) can be assumed to be of the same order of
magnitude as that of the kinematic viscosity ν ′̀ of the liquid). This procedure has to
be carried out numerically and can show complications with respect to computation
method and computation time and, therefore, it is not convenient for the work to be
presented in this paper.

Prosperetti (1991) also considered the limiting cases of near-isothermal (k = 1) and
near-isentropic (k = γ) behaviour of the gas and found explicit relations between the
modified gas pressure and bubble dynamics. For simplicity, we will only consider the
near-isothermal behaviour and modify (7) as

p′i = p′v + p′g = p′v + p′g0

(
R′0
R′

)3
[

1− (γ − 1)

5γ

(
R′0
R′

)2
R′0
α′

dR′

dt′

]
, (15)

where α′ is the thermal diffusivity of the gas. It should be mentioned that (15) can
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only be employed in the near-isothermal case. In this case, ν ′D in (14) will represent
all of the damping contributions except those arising from the thermal behaviour
of the gas. In this paper, except for the limiting near-isothermal behaviour of (15),
we will employ the polytropic law of (7) for the gas behaviour and represent all
damping mechanisms lumping them together in the form of viscous dissipation by
the damping coefficient ν ′D in (14). Despite the fact that the damping mechanisms
(except that of viscous damping) lack the correct form for cavitating bubbles in this
simplified model, the model will prove useful in furnishing the relative magnitude of
the damping effect (with respect to viscous damping) necessary to stabilize the flow
towards stable steady-state solutions. Equations (1)–(4) and the modified Rayleigh–
Plesset equation (14) together with (7) (or (15) when k = 1) constitute the model
equations we will use in our investigation of quasi-one-dimensional cavitating nozzle
flows.

2.2. Normalized model equations

We now normalize the above model equations. For convenience, we define the non-
dimensional mixture density ρ, mixture pressure p, partial vapour pressure pv , partial
gas pressure pg and mixture velocity u by

ρ =
ρ′

ρ′̀
= 1− β, p =

p′

p′0
, pv =

p′v
p′0
, pg =

p′g
p′0
, u =

u′√
p′0/ρ′̀

, (16)

where p′0 is the static pressure at the nozzle inlet. We also normalize the axial
coordinate x′, the cross-sectional area A′ and the bubble radius R′ by

x =
x′

H ′0
, A =

A′

A′0
, R =

R′

R′0
, (17)

where H ′0 is the inlet nozzle height as shown in figure 1, A′0 is the inlet cross-sectional
area of the nozzle (for a two-dimensional nozzle it can be taken as the inlet height
H ′0) and R′0 is the initial radius of bubbles (taken as monodispersed). In particular,
R′0 can be related to the inlet void fraction β0 by

β0 =
4
3
πR′ 30 n

′
0

1 + 4
3
πR′ 30 n

′
0

. (18)

The quasi-one-dimensional steady nozzle flow equations (1)–(4) together with the
modified Rayleigh–Plesset equation (14) and equations (7) and (15) then become

ρ = 1− β, (19)

ρuA = λ0 = (1− β0)u0, (20)

ρu
du

dx
= −dp

dx
+

4

3 (Re`)

d2u

dx2
− ϕCwρu2, (21)

R = κ0

(
β

1− β
)1/3

, (22)

and

pv − p
L2

=

[
1 + (3Λ2 − 1) (R/κ0)

3/2
][

1 + (R/κ0)3
] [

u2R
d2R

dx2
+ uR

du

dx

dR

dx

]
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+
3

2

[
1 + 2(2Λ2 − 1) (R/κ0)

3 + Λ2(R/κ0)
6
][

1 + (R/κ0)3
]2 u2

(
dR

dx

)2

+
S0

L2 R
+

4

L2 (Re)

u

R

dR

dx
− pg0

L2 R3k

[
1− (γ − 1)

5γ

L

α

u

R2

dR

dx
δk1

]
. (23)

In equations (19)–(23), δk1 is the Kroneckar delta, L is the ratio of micro to macro
scale given by

L =
R′0
H ′0
, (24)

κ0 is given by

κ0 =

(
1− β0

β0

)1/3

, (25)

u0 is the non-dimensional inlet velocity (u0 = u′0/
√
p′0/ρ′̀ with u′0 denoting the actual

inlet velocity), Re and Re` are Reynolds numbers conveniently defined by

Re =
H ′0
√
p′0/ρ′̀

ν ′D
, Re` =

ρ′̀ H ′0
√
p′0/ρ′̀

µ′̀
, (26)

ϕ is defined by

ϕ =
H ′0P′
2A′

, (27)

Cw is the wall friction coefficient, S0 is the non-dimensional surface tension coefficient
defined by

S0 =
2 S ′

p′0 R′0
, (28)

and α is the normalized thermal diffusivity of the gas defined by

α =
α′√

p′0/ρ′̀ R′0
. (29)

The normalized initial vapour pressure pg0 in (23) is fixed by the mechanical equilib-
rium condition at the nozzle inlet as

pg0 = 1 + S0 − pv. (30)

The normalized model equations (19)–(23) provide a coupled system of equations
for the flow variables p, ρ, u, β and R provided that the normalized cross-sectional
area A (nozzle shape) and pv (usually taken as a constant by assuming isothermal
conditions) are given.

3. The speed of sound and preliminary results
In this section, we consider the sonic speed of cavitating nozzle flows in the

homogeneous flow model and discuss some general results underlying the model
equations of the previous section. For this reason, we assume that the mixture density
in the model under consideration is of the form of equation (1). When isothermal
behaviour is assumed, the calculation of the sonic speed becomes straightforward
(e.g. see van Wijngaarden 1972). From the definition of the speed of sound

1

c′ 2
=

dρ′

dp′
(31)
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for isothermal flow, it follows by direct differentiation from (1) that

1

c′ 2
=

(1− β)

c′ 2`
− ρ′` dβ

dp′
, (32)

where

c′ 2` =
dp′

dρ′̀
, (33)

with subscript ` denoting the liquid phase. By normalizing this sound speed in
the same way as the normalization for the velocity and by writing dβ/dp′ =
(dβ/dx′)/(dp′/dx′), equation (32) takes the normalized form

1

c2
=

(1− β)

c2
`

− dβ/dx

dp/dx
. (34)

For convenience, let us define ω by

ω =
λ0

A
. (35)

By solving from (19) and (20) for β and differentiating with respect to x, we can
relate the derivative dβ/dx to du/dx and dω/dx as

dβ

dx
=
ω

u2

(
du

dx
− u

ω

dω

dx

)
. (36)

By substituting from (21) for dp/dx and from (36) for dβ/dx into (34), we obtain

1

c2
=

(1− β)

c2
`

+
1

u2

du/dx− (u/ω)dω/dx

du/dx+ ϕuCw − 4d2u/dx2/[3(Re`)ω]
. (37)

Equation (37) yields an expression for the local speed of sound in the quasi-one-
dimensional cavitating nozzle flow for the two-phase homogeneous flow model em-
ployed in the isothermal approximation. In particular, (37) at the throat (dω/dx = 0)
reduces to

1

c∗2
=

(1− β∗)
c2
`

+
1

u∗2(1 + ε∗)
, (38)

where

ε∗ =
ϕ∗u∗C∗w − 4(d2u/dx2)∗/[3(Re`)ω

∗]
(du/dx)∗

, (39)

provided that (du/dx)∗ 6= 0. In (38), c` is taken as a constant for isothermal flow and
superscript ∗ refers to the throat conditions. In the case where frictional effects can be
neglected, which holds for most practical situations, equation (38) with (du/dx)∗ 6= 0
(ε∗ � 1), reduces to the inviscid flow result

1

c∗ 2
=

(1− β∗)
c2
`

+
1

u∗2
, (40)

resulting in the flow speed exceeding the speed of sound at the throat (u∗ > c∗).
In the incompressible liquid limit, we obtain u∗ = c∗, which was deduced by van
Wijngaarden (1972). On the other hand, when (du/dx)∗ = 0, equation (37) for the
speed of sound at the throat becomes

c∗ =
c`√

1− β∗ , (41)
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which for a dilute mixture becomes almost indistinguishable from its single-phase
liquid flow value. The above expressions for the speed of sound were obtained by
assuming a homogeneous two-phase flow model where the relative motion between
the phases is neglected. It is well known that the speed of sound in two-phase mixtures
is very much affected by the relative motion between the phases (e.g. see Noordzij &
van Wijngaarden 1974). For cavitating flows, homogeneous flows in which the relative
motion can be neglected require that the condition R′/H ′0 � 1 be satisfied (e.g. see
Brennen 1995 p. 152). For cavitating nozzle flows investigated here, this condition can
be shown to hold for all solutions of the model equations except for those which lead
to flow instabilities such as flashing flow solutions. Therefore, the above deductions
for the speed of sound, which neglect the relative motion between the phases, are
reasonable for all stable solutions.

Having discussed the speed of sound for quasi-one-dimensional cavitating nozzle
flow in the isothermal approximation, we now deduce some general results, mainly
from the equations of motion, which will be useful in interpreting the results from
numerical simulations. In most practical cases, frictional effects can be neglected in
the equations of motion. Consequently, (19) and (21) result in

d

dx

(
p+ 1

2
u2
)

= βu
du

dx
. (42)

The integration of (42) yields the generalized Bernoulli equation

p+ 1
2
u2 = 1 + 1

2
u2

0 +

∫ u

u0

βudu. (43)

For incompressible flow with constant normalized density 1−β0, equation (43) reduces
to the classical Bernoulli equation[

p+ (1− β0)
1
2
u2
]
inc

= 1 + (1− β0)
1
2
u2

0 = Λ0 (44)

where subscript inc denotes incompressible flow. The generalized Bernoulli equation
(43) together with (44) can then be written as(

p+ 1
2
u2
)− (p+ 1

2
u2
)
inc

= β0

(
1
2
u2

0 − 1
2
u2
inc

)
+

∫ u

u0

βudu. (45)

In particular, in the initial growth region of the converging section of the nozzle
where β > β0, we have from (45)(

p+ 1
2
u2
)− (p+ 1

2
u2
)
inc
> β0

(
1
2
u2 − 1

2
u2
inc

)
> 0, (46)

since u = ω/(1−β) > uinc = ω/(1−β0). Thus, in the converging section of the nozzle,
we have the remarkable result(

p+ 1
2
u2
)
>
(
p+ 1

2
u2
)
inc
. (47)

On the other hand, it also follows from (45) that(
p+ 1

2
u2
)− (p+ 1

2
u2
)
inc
< β0

(
1
2
u2

0 − 1
2
u2
inc

)
+ β

(
1
2
u2 − 1

2
u2

0

)
(48)

in the converging section of the nozzle, from which we deduce

p− pinc < 1
2
βu2 − β0

1
2
u2
inc −

(
1
2
u2 − 1

2
u2
inc

)
. (49)
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It follows by definition of u and uinc that

1
2
(u2
inc − u2) = −(β − β0)ω

2 + O(β2). (50)

Substitution into (49) yields the result

p− pinc < − 1
2
(β − β0)ω

2 + O(β2). (51)

Since, for a stable solution, ω � β and β0 < β � 1 in the converging section, the
term O(β2) can be neglected with respect to the first term of the right-hand side of
inequality (51). Thus, for a stable solution, we have

p < pinc (52)

in the converging section of the nozzle. Inequalities (47) and (52) should hold in the
converging section of the nozzle for any stable solution of the model equations.

4. The dynamical system and initial-value problem for the flow speed
We now return to the normalized model equations (19)–(23). We first note that

different solutions of these model equations may emerge, depending on whether the
problem is treated as an initial-value problem (IVP) by specifying only the initial
conditions at the nozzle inlet or it is treated as an initial/boundary-value problem
by specifying some additional condition such as the nozzle exit pressure (in the latter
case the flow can be choked and shock waves may occur). In this investigation, we
will restrict our discussion to an IVP of equations (19)–(23). It has already been
demonstrated by Wang & Brennen (1997, 1998) and by Delale & Schnerr (1998) that
the solution for the IVP of equations (19)–(23) for Λ = 1 may lead to flow instabilities
such as flashing flow solutions. Here, we would like to demonstrate this instability
on mathematical grounds and show how bubble/bubble interactions and/or various
damping mechanisms can ramify the solution. To achieve this, we wish to uncouple
equations (19)–(23) arriving at a single ordinary differential equation for a given
nozzle configuration. For this reason, we note that the cavitating flow field will, most
likely, be turbulent; therefore, the wall friction coefficient Cw should be calculated
based on turbulent flow correlations. For single-phase turbulent correlations, the wall
friction coefficient Cw can be written as a function of a conveniently defined flow
Reynolds number Ref and a relative roughness parameter ε as

Cw = Cw(Ref, ε), (53)

which, in turn, can be considered as a function of u and x. For cavitating flows, this
relation can be very complicated and may depend on additional factors. With (53), it
is indeed possible to reduce the complete system of (19)–(23) to a single third-order
ordinary differential equation for the flow speed u. This is achieved as follows. From
(19) and (20), we obtain

β = 1− ω

u
(54)

where ω is given by (35). Substitution from (54) into (22) yields

R = κ0

( u
ω
− 1
)1/3

. (55)

By differentiating (55) twice with respect to x, and by substituting for dR/dx and
d2R/dx2 into the modified Rayleigh–Plesset equation (23), we arrive at the pressure–
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velocity relation

pv − p = A1(u, x)
d2u

dx2
+ B1(u, x)

(
du

dx

)2

+ C1(u, x)
du

dx
+ D1(u, x), (56)

where the coefficients A1(u, x), B1(u, x), C1(u, x) and D1(u, x) are given in Appendix
A. Now by differentiating (56) with respect to x, and by substituting for dp/dx
together with the relation ρu = ω into the momentum equation (21), we obtain the
aforementioned third-order ordinary differential equation for the flow speed u of
quasi-one-dimensional cavitating nozzle flows as

A(u, x)
d3u

dx3
+

[
B(u, x)

du

dx
+ C(u, x)

]
d2u

dx2
+ D(u, x)

(
du

dx

)3

+ E(u, x)

(
du

dx

)2

+ F(u, x)
du

dx
+ G(u, x) = 0, (57)

where the coefficients A(u, x), B(u, x), C(u, x), D(u, x), E(u, x), F(u, x) and G(u, x)
are explicitly given in Appendix B. Equation (57) together with u0, (du/dx)0 and
(d2u/dx2)0, where the subscript 0 refers to nozzle inlet-values, constitutes an initial-
value problem for the flow speed u provided that the nozzle shape is given and
that the parameters entering the coefficients given in Appendix B are related to the
specified nozzle inlet conditions. In particular, (du/dx)0 and (d2u/dx2)0 can be related
to the nozzle inlet area and the inlet flow speed u0 by(

du

dx

)
0

= u0

(
1

ω

dω

dx

)
0

, (58)

(
d2u

dx2

)
0

= u0

(
1

ω

d2ω

dx2

)
0

. (59)

Equations (58) and (59) are equivalent to the inlet conditions (dR/dx)0 = 0 and
(d2R/dx2)0 = 0. The latter condition can be obtained by considering the modified
Rayleigh–Plesset equation (23) at the nozzle inlet together with the inlet mechanical
equilibrium condition

(pv)0 = 1 + S0 − pg0. (60)

The initial-value problem for (57) can be solved numerically (e.g. by the Runge–Kutta
method); however, close examination of the coefficients A(u, x), B(u, x), . . . given in
Appendix B suggests a highly stiff nonlinear system with a singularity at u = ω. For
this reason, it is convenient to use the scaled variables φ, ψ and ζ defined by

φ = κ3
0 (u− ω) , (61)

ψ = κ3
0

(
du

dx
− dω

dx

)
(62)

and

ζ = κ3
0

(
d2u

dx2
− d2ω

dx2

)
. (63)

Now (57), after cumbersome manipulations, yields the dynamical system

dφ

dx
= ψ, (64)
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dψ

dx
= ζ (65)

and

dζ

dx
= f(φ, ψ, ζ, x), (66)

where

f(φ, ψ, ζ, x) =
φ

ω

d3ω

dx3

+

[
1

3φ

(
κ3

0 ω

φ+ κ3
0ω

)2
{[

4− (18Λ2 − 2)
φ

κ3
0ω
− (27Λ2 − 7)

(
φ

κ3
0ω

)2
]
ζ

+
φ

ω

[
8+4(9Λ2 +1)

φ

κ3
0ω

+(45Λ2 − 13)

(
φ

κ3
0ω

)2
]

d2ω

dx2

}(
ψ − φ

ω

dω

dx

)

− 8

L2 (Re)ω1/3φ2/3

(
κ3

0ω

φ+ κ3
0ω

)2{[
1 +

(
1 +

Re

Re`

)
φ

κ3
0ω

]
ζ

+
φ

ω

[
Re

Re`
− 1− φ

κ3
0 ω

]
d2ω

dx2

}
−2(γ − 1)pg0ωδk1

5γLαφ2

(
κ3

0ω

φ+ κ3
0ω

)(
ζ − φ

ω

d2ω

dx2

)
+ 2

(
κ3

0ω

φ+ κ3
0ω

)2[
S0

L2 ωφ
− 3kpg0

L2ω4/3−kφk+2/3

](
ψ − φ

ω

dω

dx

)
+

6φ1/3

L2ω1/3

(
κ3

0ω

φ+ κ3
0ω

)2 (
ψ

κ3
0

+
dω

dx
+

dpv/dx+ ϕuωCw

ω

)
+

8

L2 (Re)ω1/3φ5/3

(
κ3

0ω

φ+ κ3
0ω

)2 (
ψ − φ

ω

dω

dx

) (
ψ +

φ2

κ3
0ω

2

dω

dx

)
+

2(γ−1)pg0ωδk1

15γLαφ3

(
κ3

0ω

φ+κ3
0ω

)2 [(
1+4

φ

κ3
0ω

)
ψ− φ

ω

(
4+

φ

κ3
0ω

)
dω

dx

]
− 1

9φ2

(
ψ − φ

ω

dω

dx

) {[
4− 6(Λ2 − 1)

φ

φ+ κ3
0ω

] (
ψ − φ

ω

dω

dx

)2

−6
φ

ω

(
κ3

0ω

φ+ κ3
0ω

)(
ψ − φ

ω

dω

dx

)[
2
ψ

κ3
0

− 2

(
1 + 2

φ

κ3
0ω

)
dω

dx

−3(Λ2 − 1)
φ

φ+ κ3
0ω

{
ψ

κ3
0

−
(

3 + 4
φ

κ3
0 ω

)
dω

dx

}]
+

9φ2

ω2

[
2

(
κ3

0ω

φ+κ3
0ω

)2(
ψ

κ3
0

+
dω

dx

)2

−12

(
κ3

0ω

φ+κ3
0ω

)(
ψ

κ3
0

+
dω

dx

)
dω

dx

+12

(
dω

dx

)2

− 3(Λ2 − 1)
φκ3

0ω

(φ+ κ3
0 ω)2

{
ψ

κ3
0

−
(

1 + 2
φ

κ3
0 ω

)
dω

dx

}]}]

×
[
2+3(Λ2−1)

φ

φ+κ3
0ω

]−1

. (67)
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The dynamical system of equations (64)–(67) with initial values

φ0 = ω0 = λ0, (68)

ψ0 =

(
dω

dx

)
0

= −λ0

(
dA

dx

)
0

(69)

and

ζ0 =

(
d2ω

dx2

)
0

= λ0

[
2

(
dA

dx

)2

0

−
(

d2A

dx2

)
0

]
(70)

constitutes an initial-value problem for the scaled variables φ, ψ and ζ provided that
the parameters Λ, Re, β0, S0, the ratio of Re/Re` together with the constant k and the
distributions of the normalized reciprocal area ω(x), the normalized partial vapour
pressure pv(x) and a model for the wall friction coefficient Cw(u, x) are specified.

The dynamical system given above by (64)–(67) is a nonlinear non-autonomous
system in three variables. It is, therefore, very complicated for general analysis. It may
not even satisfy a local Lipschitz condition since it contains many parameters and
distributions. Consequently, instabilities may occur and bifurcation of solutions may
result for some values of the parameters and specified distributions, as has already
been demonstrated by Wang & Brennen (1997, 1998) numerically.

5. The hydrodynamic field
The hydrodynamic variables can be related to the scaled variables φ, ψ and ζ;

therefore, the solution of the initial-value problem for the dynamical system of (64)–
(67) together with the initial values (68)–(70) completely determines the hydrodynamic
field. In particular, the normalized velocity field and its derivatives can be evaluated
directly from

u =
φ

κ3
0

+ ω, (71)

du

dx
=
ψ

κ3
0

+
dω

dx
(72)

and

d2u

dx2
=

ζ

κ3
0

+
d2ω

dx2
. (73)

The void fraction β (consequently the normalized mixture density ρ) and the normal-
ized radius R can then be found by directly substituting for u from (71) into (54) and
(55), respectively, to arrive at

β = 1− ρ =
φ

φ+ κ3
0 ω

(74)

and

R =

(
φ

ω

)1/3

. (75)

The pressure field follows by substituting from (71)–(73) for u and its derivatives into
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the pressure–velocity relation (56) which yields

pv − p =
L2ω4/3

6φ1/3

(
1 +

φ

κ3
0ω

)2 [
2 + 3(Λ2 − 1)

φ

φ+ κ3
0ω

] (
ζ − φ

ω

d2ω

dx2

)
−L

2ω4/3

18φ4/3

(
1 +

φ

κ3
0ω

)2 [
1− 6Λ2 φ

φ+ κ3
0ω

] (
ψ − φ

ω

dω

dx

)2

−L
2ω1/3

6φ1/3

(
1 +

φ

κ3
0ω

)2 [
2 + 3(Λ2 − 1)

φ

φ+ κ3
0ω

] (
ψ − φ

ω

dω

dx

)
dω

dx

+

(
1 +

φ

κ3
0ω

) [
4ω

3(Re)φ
+

(γ − 1)pg0Lω
7/3δk1

15γαφ7/3

] (
ψ − φ

ω

dω

dx

)
+S0

(
ω

φ

)1/3

− pg0

(
ω

φ

)k
. (76)

6. Results and discussion
In this section, we would like to determine the solution of the initial-value problem

for the dynamical system given by (64)–(70) with smooth area variation. For this
reason, we first relate the parameters u0, Re, and S0 to the conventionally used inlet
cavitation number σ0, Reynolds number ReR0 and Weber number WeR0 by

σ0 ≡ p′0 − p′v
(1/2)ρ′̀ u′ 20

=
2(1− pv)

u2
0

, (77)

ReR0 ≡ u′0 R′0
ν ′D

= u0L(Re) (78)

and

WeR0 ≡ u′ 20 ρ
′̀ R′0
S ′

=
2

S0

u2
0, (79)

where pv is taken as a constant evaluated from the saturated vapour pressure cor-
responding to the isothermal temperature, and L is the ratio of the micro to macro
scale given by (25). Therefore, for given σ0, ReR0 and WeR0, the parameters u0, Re
and S0 entering the dynamical system can be calculated from (77)–(79) as

u0 =

(
2(1− pv)

σ0

)1/2

, (80)

Re =
(ReR0)

L
[
2(1− pv)/σ0

]1/2 (81)

and

S0 =
4(1− pv)
σ0(WeR0)

. (82)

Now for given isothermal temperature T ′ of the liquid (for which the corresponding
partial vapour pressure p′v and the surface tension coefficient S ′ can be evaluated),
inlet cavitation number σ0, Reynolds number ReR0, Weber number WeR0, ratio of
micro to macro scale L (or initial radius R′0), inlet void fraction β0 (from which κ0 is
evaluated), ratio of Re/Re` = ν ′̀/ν ′D and bubble/bubble interaction parameter Λ, the
initial-value problem for the dynamical system (64)–(70) can be solved very accurately
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employing a fourth-order Runge–Kutta method provided that the function ϕ defined
by (27), the wall friction coefficient Cw and the reciprocal normalized area ω(x) are
specified. For a quasi-one-dimensional nozzle, it can be easily shown that

ϕ =
1

A
. (83)

The wall friction coefficient Cw can be evaluated by (53) for a smooth wall using the
two-dimensional turbulent correlation, which was verified experimentally by Laufer
(1950) (for details see Ward-Smith 1980),

1

C
1/2
w

= 1.768 ln
[
(Ref)C

1/2
w

]− 0.94, (84)

where the flow Reynolds number Ref is defined by

Ref =
2Q′f
ν ′̀

= 2uARe`, (85)

with Q′f denoting the incompressible volumetric flow rate per unit width of the nozzle
and with Re` given by (26). For the normalized area A, we use two nozzles: one used
by Schulz (1995), and given by

A(x) = 0.8− 0.00254118 x+ 0.12238569 x2 − 0.26540443 x3 − 0.85375693 x4

−1.3807352 x5 − 1.3813923 x6 − 0.81149967 x7 − 0.25638892 x8

−0.033676342 x9 for x 6 0

and

A(x) = 0.8− 0.00254118 x+ 0.12238569 x2 − 0.26540443 x3 + 0.46149 x4

−0.42670 x5 + 0.21927 x6 − 0.063639 x7 − 0.0097241 x8

−0.00060396 x9 for x > 0, (86)

where the origin of the x-axis is chosen at the nozzle throat (referred to as nozzle 1)
and another one used by Wang & Brennen (1997, 1998), and given by

A(x) =
1

2

[
3 + cos

(
2πx

500L

)]1/2

for 0 6
x

L
6 500

and

A(x) = 1 for
x

L
> 500, (87)

where the origin of the x-axis is chosen at the nozzle inlet (referred to as nozzle
2). As can be seen clearly from figure 1, nozzle 2 seems to be more convenient for
two-dimensional calculations and will be employed only to compare the results of this
investigation with those of Wang & Brennen (1997, 1998) under the same specified
conditions.

For both nozzles, a two-phase bubbly flow with bubbles containing water vapour
and air in water at an isothermal temperature of 20◦C, implying a constant partial
vapour pressure p′v = 0.0234 bar, a constant surface tension coefficient S ′ = 7.1 ×
10−2 N m−1 and a constant water viscosity µ′̀ = 10−3 kg m−1 s−1, is considered.
Under these conditions, we first find the solution of the initial-value problem of the
dynamical system (64)–(70) for Λ = 1 and Re = Re`, corresponding to the case where
bubble/bubble interactions are neglected and where the only damping mechanism is
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Figure 3. A stable solution of the dynamical system (64)–(70) with viscous damping only
(Re`/Re = 1) and without bubble/bubble interactions (Λ = 1) for the scaled variables φ and
ψ for water vapour–air bubbles in water at an isothermal temperature of 20◦C representing limited
growth and collapse of bubbles along the axis of nozzle 1 with initial void fraction β0 = 10−5, initial
cavitation number σ0 = 0.5, Reynolds number ReR0 = 50, Weber number WeR0 = 7.04225 and ratio
of micro to macro scale L = 5× 10−5 (corresponding to inlet flow speed u′0 = 10 m s−1 and initial
radius R′0 = 5 µm).

viscous damping. For nozzle 1, with inlet height H ′0 = 0.1 m, the initial cavitation
number σ0, the initial void fraction β0 and the inlet flow speed u′0 are fixed at the
values σ0 = 0.5, β0 = 10−5 and u′0 = 10 m s−1 respectively. The initial radius R′0 is
varied from 5 µm to 12 µm and the results are shown in figures 3–8. Figures 3–5
show a stable solution for R′0 = 5 µm (corresponding to ReR0 = 50, WeR0 = 7.04225
and L = 5× 10−5). Figure 3 exhibits the solution of the initial-value problem of the
dynamical system (64)–(70) for φ and ψ. In this case, φ exhibits a maximum at the
throat (x = 0) where ψ vanishes. The variations of the normalized radius R and of
the pressure coefficient Cp, defined by

Cp =
p′ − p′0
0.5ρ′̀ u′ 20

=
p− 1

0.5u2
0

, (88)

for this case are shown in figure 4. Here, the bubble grows to its maximum value (about
1.5 times its initial radius) at the throat. The pressure coefficient almost coincides
with the incompressible single-phase pressure coefficient (Cp)inc although Cp < (Cp)inc,
as implied by (52) (in this case Cp− (Cp)inc = O(β) = O(10−5) to O(10−4) numerically,
which cannot be distinguished on the scale of figure 4). The corresponding variations
of the void fraction β and the flow speed u are shown in figure 5. Figures 6–8 show
a flashing flow solution for R′0 = 12 µm with the rest of the independent parameters
held fixed. Figure 6 exhibits the ever increasing solution of the dynamical system for
φ and ψ, whereas figure 7 shows the distributions of the normalized radius R and of
the pressure coefficient Cp and its incompressible single-phase value (Cp)inc. Figure 8
shows the corresponding distributions of the void fraction β and of the normalized
flow speed u. In this case, the flow flashes before it reaches the throat. Once again,
the distributions of Cp and (Cp)inc (with Cp < (Cp)inc) almost coincide, except for
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Figure 4. Distributions of the normalized radius R, the pressure coefficient Cp and its incom-
pressible single-phase value (Cp)inc along the axis of nozzle 1 under the conditions stated in
figure 3.
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Figure 5. Distributions of the normalized flow speed u/u0 and the void fraction β along the axis
of nozzle 1 under the conditions stated in figure 3.

the very thin zone near the throat (x = 0) where enormous deviations build up. In
summary, the flow field in nozzle 1 exhibits instabilities inherited from the nature
of the dynamical system (64)–(70) as the initial radius is increased from R′0 = 5 µm
to R′0 = 12 µm with a bifurcation at R′0 = 10.2245 ± 0.0005 µm to a flashing flow
solution when the rest of the parameters are held fixed. It is worthwhile to mention
that no significant changes are observed in either of the stable or flashing solutions
when wall shear effects are taken into account by (84). As reasoned in Appendix C,
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incompressible single-phase value (Cp)inc, along the axis of nozzle 1 under the conditions stated in
figure 6.

the occurrence of this instability during the growth period of bubbles in cavitating
nozzle flows is mainly due to the use of the classical Rayleigh–Plesset equation for
bubble dynamics (equation (23) with Λ = 1 and Re = Re`) and, as will be discussed
later, it can be overcome by taking into account bubble/bubble interactions (Λ� 1).
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along the axis of nozzle 1 under the conditions stated in figure 6.
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Figure 9. Flashing flow solution of the dynamical system (64)–(70) with viscous damping only
(Re`/Re = 1) and without bubble/bubble interactions (Λ = 1) for the scaled variables φ and ψ
for water vapour-air bubbles in water at an isothermal temperature of 20◦C with a single rebound
structure along the axis of nozzle 2 with initial void fraction β0 = 6×10−6, initial cavitation number
σ0 = 0.8, Reynolds number ReR0 = 1000, Weber number WeR0 = 137 and ratio of micro to macro
scale L = 10−3 (corresponding to inlet flow speed u′0 = 10 m s−1 and initial radius R′0 = 100 µm).

A similar type of behaviour, i.e. bifurcation of the flow to a flashing solution, has
already been found by Wang & Brennen (1997, 1998) for nozzle 2.

We now compare the solution for the initial-value problem of the system of
equations (64)–(70) for Λ = 1 with the numerical results of Wang & Brennen (1997,
1998) in nozzle 2 under the same specified conditions. For this reason, we fix the initial
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Figure 11. Flashing flow distributions of the normalized flow speed u/u0 and the void fraction β
along the axis of nozzle 2 under the conditions stated in figure 9.

cavitation number at σ0 = 0.8, the Reynolds number at ReR0 = 1000, Weber number
at WeR0 = 137 and the ratio of micro to macro scale at L = 10−3 (corresponding to
the fixed initial flow speed u′0 = 10 m s−1, fixed initial radius R′0 = 100 µm and fixed
nozzle inlet height H ′0 = 0.1 m) and vary the initial void fraction β0 between 6.0×10−6

and 7.0× 10−6 (in contrast to the numerical results given by Wang & Brennen (1997)
where β0 is varied between 2.0× 10−6 and 2.9× 10−6 for the same fixed values of the
rest of the parameters). Typical results for the case with β0 = 6.0 × 10−6 are plotted
in figures 9–11. In all of these figures, the origin of the axis of nozzle 2 is chosen
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Figure 12. Flashing flow solution of the dynamical system (64)–(70) with viscous damping only
(Re`/Re = 1) and without bubble/bubble interactions (Λ = 1) for the scaled variables φ and ψ for
water vapour–air bubbles in water at an isothermal temperature of 20◦C with no rebound structure
along the axis of nozzle 2 with initial void fraction β0 = 7×10−6, initial cavitation number σ0 = 0.8,
Reynolds number ReR0 = 1000, Weber number WeR0 = 137 and ratio of micro to macro scale
L = 10−3 (corresponding to inlet flow speed u′0 = 10 m s−1 and initial radius R′0 = 100 µm).

at x = 0 with the throat located at x = 0.25. Figure 9 shows the solution of the
dynamical system (64)–(70) for φ and ψ. Contrary to the previously discussed stable
solution in nozzle 1, φ does not exhibit a maximum at the throat (x = 0.25) in this
case. The maximum is shifted to the diverging section of the nozzle downstream of
the throat. The solution for φ then decreases (corresponding to the collapse of the
bubble) and this decrease continues even in the constant area section (x > 0.5) with
an almost abrupt change towards a flashing flow solution (which is not shown in the
figure). Figure 10 shows the corresponding distributions for the normalized radius R
and for the pressure coefficients Cp and (Cp)inc. We observe that the bubble is still
growing at the throat, exhibits a maximum in the diverging section and then collapses
(after this rebound, the flow flashes which is not shown in the figure). The pressure
coefficient Cp deviates considerably from its incompressible value (Cp)inc downstream
of the throat and exhibits a real jump at x = 0.5 where the second- and higher-order
derivatives of the area are discontinuous, as expected (the fact that the jumps in the
derivatives of ω at some point leads to a jump in the pressure coefficient can be seen
from (76)). This observation demonstrates the high level of precision achieved in the
solution of the initial-value problem of the dynamical system (64)–(70). Figure 11
shows the corresponding distributions for the void fraction β and for the normalized
flow speed u. For this case, wall shear effects, given by (84), can be neglected. Figures
12–14 show a different type of solution in nozzle 2 for β0 = 7.0×10−6 with the rest of
the parameters held fixed. Figure 12 shows a flashing flow solution (with no rebound
structure) for φ and ψ, whereas figure 13 displays the corresponding distributions for
the normalized radius R and for the pressure coefficients Cp and (Cp)inc. Once again,
notice the jump in Cp at x = 0.5 owing to the discontinuities in the derivatives of
the normalized area. The flashing flow distributions for the void fraction β and for
the normalized flow speed u in nozzle 2 are shown in figure 14. Wall shear effects,
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Figure 14. Flashing flow distributions, with no rebound structure, of the normalized flow speed
u/u0 and the void fraction β along the axis of nozzle 2 under the conditions stated in figure 12.

given by (84), also seem to be insignificant for this case. In summary, for the cases
investigated, two types of flow patterns emerge for nozzle 2:

(i) A flashing flow solution with no rebound structure at β0 = 7.0× 10−6, and
(ii) a flashing flow structure with a single rebound (growth and collapse of the

bubble) at β0 = 6.0× 10−6,
with the rest of the parameters held fixed at the values given above and in the
figure captions. The bifurcation from one type of solution to the other occurs at
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approximately β0 = 6.1785 ± 0.0005 × 10−6. In both cases, the flow flashes showing
that there are no stable steady-state solutions for these cases in the model considered
(Λ = 1 and Re = Re`). A comparison of our results for nozzle 2 with those of Wang
& Brennen (1997) under similar conditions (actually the same conditions except for
the range of β0) show similarities as well as differences. The main difference is that
no stable solution can be found for the solution of the dynamical system (64)–(70)
exhibited in figures 10–12 (the flow flashes after a rebound, i.e. growth and collapse
of bubbles) in contrast to the quasi-statically stable ringing structure obtained in the
constant area section (x > 0.5) by Wang & Brennen (1997). Although the growth and
collapse structures of the first rebound look similar in both cases, our calculations
show that the flow immediately flashes after the first rebound (unstable solution),
whereas the rebound is repeated to form a ringing structure (stable solution) in the
results of Wang & Brennen. The extremely high gradients in the flow variables after
the first rebound seem to be responsible for this type of flashing solution, preventing
the formation of a stable ringing structure in our calculations. The second difference
is the quantitative difference in the bifurcation value of β0 (the bifurcation reported
by Wang & Brennen (1997) occurs at β0 = 2.862 × 10−6 compared to our value at
β0 = 6.1785 ± 0.0005 × 10−6) occurring between the two types of different structure
in each case. The numerical error inherited from integration of coupled equations of
flow and bubble dynamics for Λ = 1 may be the source of this second difference.

Wang & Brennen (1998) also considered the effect of damping mechanisms (liquid
viscosity, thermal damping, acoustic radiation, etc.) by introducing a damping coef-
ficient (in the same form as in (14)) into the Rayleigh–Plesset equation (a value of
such a damping coefficient in the Rayleigh–Plesset equation that compares well with
experiments for spherical clouds is recently given by Colonius et al. 1998). With such
a damping coefficient, they reproduced the calculations by reducing the Reynolds
number ReR0 from a value of 1000 to a value of 33 (corresponding to increasing the
ratio Re`/Re from unity to 30) keeping the rest of the variables fixed for nozzle 2 and
varying the void fraction between 2.5× 10−6 and 3.1× 10−6. Their results showed the
same structural considerations discussed above with some reduction in the maximum
attainable bubble radii along the nozzle axis for the case of their quasi-statically
stable flow with rebound structure downstream of the throat and with a shift to a
value of β0 = 3.045 for the bifurcation to a flashing flow. For comparison with our
calculations we choose the same conditions for nozzle 2 as stated in the caption
of figure 12, but now vary ReR0 between 10 and 1000 (this corresponds to varying
Re`/Re, between 1 and 100). The results for the normalized bubble radius R and the
pressure coefficient Cp are shown in figure 15. The effect of damping (Re`/Re > 1) can
clearly be seen from this figure. For the cases where ReR0 assumes the values 100 and
10, corresponding to Re`/Re equal to 10 and 100, respectively, the maximum radii are
lowered with a shift of the collapse zones toward the throat. The pressure coefficients
Cp show, respectively, a slight increase followed by an instability of ever decreasing
solution for ReR0 = 100 in the constant area section downstream the throat, and an
ever increasing value resulting from instabilities in the diverging section of the nozzle
for ReR0 = 10 (the case ReR0 = 1000 corresponds to the solution with Re`/Re = 1).
These instabilities seem to arise from extremely high gradients of the flow variables
either during collapse or rebound. Notice also that the instability leads to an ever
increasing pressure coefficient Cp in the diverging section of nozzle 2, whereas it
leads to decreasing pressure coefficients Cp in the constant area section of nozzle 2.
Therefore, the damping mechanisms introduced into the Rayleigh–Plesset equation
by a damping coefficient in the form of viscous dissipation, do not seem to overcome
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Figure 15. The effect of damping mechanisms by a damping coefficient on the distributions of the
normalized radius R and the pressure coefficient Cp along the axis of nozzle 2 under the conditions
stated in figure 9 and for Reynolds number ReR0 assuming values 10, 100 and 1000 (corresponding
to Re`/Re, respectively, equal to 100, 10 and 1).

the instabilities observed for nozzle 2 in the model considered (Λ = 1). For the cases
investigated, it is worthwhile to mention that the sensitivity of the flow with respect
to instabilities seems to be greatest when the area variations are small. Consequently,
the slenderness of the nozzle turns out to be an important parameter.

Having demonstrated the instabilities for the initial-value problem of the model
equations (19)–(23) for Λ = 1 (the classical Rayleigh–Plesset equation coupled to the
quasi-one-dimensional steady nozzle flow equations) in both nozzles, it is important to
see the physical ramifications of these instabilities. In doing so, we will consider these
ramifications for nozzle 1 alone since it fits more into the quasi-one-dimensional flow
description (see figure 1). As was shown in nozzle 2, the use of a damping coefficient (in
the form of viscous dissipation) alone in the Rayleigh–Plesset equation for damping
mechanisms does not seem to overcome the instabilities. Therefore, we first try to study
these ramifications by taking into account bubble/bubble interactions (Λ � 1) with
viscous damping only (k = 1, α→∞ and Re`/Re = 1). In particular, we investigate the
effect of bubble/bubble interactions on the flashing flow solution exhibited in figures
6–8 in nozzle 1 under the same conditions as specified in figure 6. Figures 16–18
demonstrate how the instability disappears for the value of the interaction parameter
Λ = 300 leading to a stable cavitating flow solution with continuous growth of
bubbles (continuous evaporation). If the interaction parameter Λ is further increased,
a single rebound structure (evaporation followed by condensation) with collapsing
bubbles at the nozzle exit is observed. Figures 19–21 show such a stable cavitating flow
with collapsing bubbles at the nozzle exit. If the interaction parameter Λ is increased
beyond a certain value, collapsing structure instabilities set in with ever decreasing
radii of bubbles corresponding to the pressure coefficient Cp increasing without bound.
Such an unstable solution is shown in figures 22–24 for Λ = 400. In summary, the
flashing flow instability in nozzle 1 for Λ = 1 under the conditions specified in
figure 6 can be overcome by taking into account bubble/bubble interactions in our
model for the range of the interaction parameter 285 < Λ < 375 resulting in stable
steady cavitating nozzle flow solutions either with continuous growth of bubbles
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Figure 16. A stable cavitating flow solution of the dynamical system (64)–(70) for the scaled
variables φ and ψ with continuous growth of bubbles along the axis of nozzle 1 under the same
conditions specified in figure 6, but taking into account bubble/bubble interactions with interaction
parameter Λ = 300.
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Figure 17. Stable cavitating flow distributions of the normalized radius R, the pressure coefficient Cp
and its incompressible single-phase value (Cp)inc with continuous growth of bubbles along the axis
of nozzle 1 under the same conditions specified in figure 6, but taking into account bubble/bubble
interactions with interaction parameter Λ = 300.

or with a single rebound structure with collapsing bubbles at the nozzle exit. The
appropriate value of the interaction parameter Λ corresponding to these solutions
can only be determined by comparison with experiments where the same type of
behaviour is observed. It can also be demonstrated that bubble/bubble interactions
are insignificant (even for values of the interaction parameter Λ of the order of 103

to 104) for the stable non-cavitating flow solution in nozzle 1 exhibited in figures 3–5.
This is, indeed, expected since bubble/bubble interactions can be neglected for small
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Figure 18. Stable cavitating flow distributions of the normalized flow speed u/u0 and the void
fraction β with continuous growth of bubbles along the axis of nozzle 1 under the same conditions
specified in figure 6, but taking into account bubble/bubble interactions with interaction parameter
Λ = 300.
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Figure 19. A stable cavitating flow solution of the dynamical system (64)–(70) for the scaled
variables φ and ψ with a single rebound structure (growth followed by collapse of bubbles) along
the axis of nozzle 1 under the same conditions specified in figure 6, but taking into account
bubble/bubble interactions with interaction parameter Λ = 350.

bubble sizes with radii of the order of 10 µm with insignificant growth and collapse,
as shown in figure 4.

We now discuss the effects of the various damping mechanisms on cavitating nozzle
flows in our model. Our calculations show that the effect of thermal damping in the
near-isothermal case without bubble/bubble interactions (k = 1, Re`/Re = 1, finite α
and Λ = 1; see Prosperetti 1991) does not overcome the flashing flow instability of
figures 6–8 in nozzle 1. It is also insignificant for the non-cavitating stable solution
of figures 3–5. Its only effect is to shift the bifurcation value of the initial value
slightly showing that the near-isothermal approximation does not seem to take into
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Figure 20. Stable cavitating flow distributions of the normalized radius R, the pressure coefficient
Cp and its incompressible single-phase value (Cp)inc with a single rebound structure (growth followed
by collapse of bubbles) along the axis of nozzle 1 under the same conditions specified in figure 6,
but taking into account bubble/bubble interactions with interaction parameter Λ = 350.
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Figure 21. Stable cavitating flow distributions of the normalized flow speed u/u0 and the void
fraction β with a single rebound structure (growth followed by collapse of bubbles) along the axis
of nozzle 1 under the same conditions specified in figure 6, but taking into account bubble/bubble
interactions with interaction parameter Λ = 350.

account the thermal damping effect satisfactorily (we can, therefore, set α → ∞
and k 6= 1 in our model equations). This suggests that in our model equations,
we should take into account thermal damping as well as other damping effects by
varying the ratio Re`/Re. As has been demonstrated in figure 15 for nozzle 2, the
use of the damping coefficient ν ′D alone in our model equations (19)–(23) for various
damping mechanisms without bubble/bubble interactions (Λ = 1) may not lead to
a stable cavitating flow solution. Therefore, a stable cavitating nozzle flow solution
for the initial-value problem of our model equations (19)–(23) requires, in general,
that bubble/bubble interactions should also be taken into account (Λ� 1). For this
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Figure 22. Solution of the dynamical system (64)–(70) for the scaled variables φ and ψ with bubble
collapse instability (corresponding to an unbounded solution) along the axis of nozzle 1 under
the same conditions specified in figure 6, but taking into account bubble/bubble interactions with
interaction parameter Λ = 400.
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Figure 23. Distributions of the normalized radius R, the pressure coefficient Cp and its incom-
pressible single-phase value (Cp)inc with bubble collapse instability (corresponding to an unbounded
solution) along the axis of nozzle 1 under the same conditions specified in figure 6, but taking into
account bubble/bubble interactions with interaction parameter Λ = 400.

reason we investigate the various damping effects on the cavitating flow by varying
the ratio Re`/Re for Λ� 1. In particular, we choose to consider the effect of various
damping mechanisms on the unstable solution of figures 22–24 for Λ = 400 by
increasing the value of Re`/Re from unity to 90. The results are shown in figures
25–27. In this case, the instability is inhibited by the various damping mechanisms
resulting in a stable cavitating flow solution with collapsing bubbles at the nozzle exit,
a structure similar to that exhibited in figures 19–21 for Λ = 350 and Re`/Re = 1.
The results demonstrate that the damping effects seem to be as important as those
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Figure 24. Distributions of the normalized flow speed u/u0 and the void fraction β with bubble
collapse instability (corresponding to an unbounded solution) along the axis of nozzle 1 under
the same conditions specified in figure 6, but taking into account bubble/bubble interactions with
interaction parameter Λ = 400.
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Figure 25. A stable cavitating flow solution of the dynamical system (64)–(70) for the scaled
variables φ and ψ with a single rebound structure (growth followed by collapse of bubbles) along
the axis of nozzle 1, obtained with a damping coefficient Re`/Re = 90 stabilizing the corresponding
bubble collapse instability in figure 22 for the value of the interaction parameter Λ = 400.

of bubble/bubble interactions in our model equations for cavitating nozzle flows;
therefore, both effects should be considered simultaneously (this suggests that we
should consider Λ � 1 and Re`/Re � 1 in our model equations). The appropriate
values for Λ and Re`/Re can only be found in comparison with those experiments
showing the same behaviour and with no influence from the back pressure.
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Figure 26. Distributions of the normalized radius R, the pressure coefficient Cp and its incom-
pressible single-phase value (Cp)inc with a single rebound structure (growth followed by collapse of
bubbles) along the axis of nozzle 1, obtained with a damping coefficient Re`/Re = 90 stabilizing
the corresponding bubble collapse instability in figure 23 for the value of the interaction parameter
Λ = 400.
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Figure 27. Distributions of the normalized flow speed u/u0 and the void fraction β with a single
rebound structure (growth followed by collapse of bubbles) along the axis of nozzle 1, obtained
with a damping coefficient Re`/Re = 90 stabilizing the corresponding bubble collapse instability in
figure 24 for the value of the interaction parameter Λ = 400.

7. Conclusions
A homogeneous bubbly mixture model, which takes into account bubble/bubble

interactions by the local homogeneous model of Kubota et al. (1992) and various
damping mechanisms, lumped together in the form of viscous dissipation by a
damping coefficient, is constructed for quasi-one-dimensional cavitating nozzle flows.
The system of equations is uncoupled leading to a nonlinear dynamical system of
scaled variables that characterize deviations of the flow speed and its derivatives from
their corresponding incompressible single-phase values. The initial-value problem for
the dynamical system is then solved for cavitating nozzle flows. Results obtained
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when bubble/bubble interactions are neglected show either stable non-cavitating flow
solution for which the maximum radius remains smaller than the Blake radius or
flashing flow solutions as has recently been found by Wang & Brennen (1997, 1998).
Stable steady-state cavitating nozzle flow solutions were found for some range of the
bubble/bubble interaction parameter when bubble/bubble interactions were taken
into account. These solutions exhibited either a continuous growth of bubbles with
evaporating bubbles at the nozzle exit or a single rebound structure with growth of
bubbles followed by collapse. A further increase in the bubble/bubble interaction
parameter leads to solutions with collapse structure instabilities, which are stabilized
by increasing the damping coefficient by orders of magnitude beyond that of viscous
damping. The results show that bubble/bubble interactions and damping mechanisms
have to be considered simultaneously for stable solutions. The effects of the wall shear
stress on cavitating flows and on the flow instabilities were insignificant for all the
cases considered.

It is worthwhile to mention that the damping mechanisms (all lumped together in
the form of viscous dissipation by a damping coefficient) of this simplified model can
only yield an estimate of the relative magnitude of all of the damping effects, with
respect to that of viscous damping, for stable steady flows. More sophisticated models,
which take into account the various damping mechanisms in a more realistic manner,
require the use of the energy equation for cavitating bubbles (e.g. for an improvement
on the thermal behaviour, the Prosperetti model (1991) can be used). The problem
has to be, then, considered numerically. It should also be mentioned that we only
considered the solution of the initial-value problem of the model equations; therefore,
other solutions such as choked nozzle flow solutions with shock waves arising from
the influence of the back pressure can also be possible.
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Appendix A. Pressure–velocity relation for quasi-one-dimensional
cavitating nozzle flow

The pressure–velocity relation for quasi-one-dimensional cavitating nozzle flow,
whose derivation is discussed in § 4, can be written as

pv − p = A1(u, x)
d2u

dx2
+ B1(u, x)

(
du

dx

)2

+ C1(u, x)
du

dx
+ D1(u, x) (A 1)

where

A1(u, x) =
L2κ2

0

6

( u
ω
− 1
)−1/3

u
[
2 + (3Λ2 − 1)

( u
ω
− 1
)]
, (A 2)

B1(u, x) = −L
2 κ2

0

18

( u
ω
− 1
)−4/3 u

ω

[
6Λ2 − (6Λ2 − 1)

u

ω

]
, (A 3)
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C1(u, x) =
L2κ2

0

18

( u
ω
− 1
)−4/3 u

ω

{[
9(1− Λ2) + (30Λ2 − 12)

u

ω

− (21Λ2 − 5)
u2

ω2

]
dω

dx
+

24

L2(Re)κ2
0

( u
ω
− 1
)1/3

+
6(γ − 1)pg0δk1

5γLκ6
0α(u/ω − 1)

}
(A 4)

and

D1(u, x) =− L
2 κ2

0

18

( u
ω
− 1
)−4/3

{
3u

u

ω

[
2 + (3Λ2 − 1)

( u
ω
− 1
)]( u

ω
− 1
) d2ω
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+
( u
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[
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] (
dω
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( u
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[
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L2(Re)κ2
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( u
ω
− 1
)1/3
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6(γ − 1)pg0δk1

5γLκ6
0α(u/ω − 1)

]
dω

dx

− 18 S0

L2κ3
0

( u
ω
− 1
)

+
18 pg0

L2 κ3k+2
0

(
u/ω − 1

)k−4/3

}
. (A 5)

Appendix B. Third-order differential equation for the flow speed in
quasi-one-dimensional cavitating nozzle flow

The third-order differential equation for the velocity in quasi-one-dimensional
cavitating nozzle flow, derived in § 4, is of the form

A(u, x)
d3u

dx3
+

[
B(u, x)

du

dx
+ C(u, x)

]
d2u

dx2
+ D(u, x)

(
du

dx

)3

+E(u, x)

(
du

dx

)2

+ F(u, x)
du

dx
+ G(u, x) = 0 (B 1)

where

A(u, x) = A1(u, x) =
L2 κ2

0
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( u
ω
− 1
)−1/3

u
[
2 + (3Λ2 − 1)

( u
ω
− 1
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, (B 2)

B(u, x) =
∂A1

∂u
+ 2B1(u, x) =

L2 κ2
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( u
ω
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)−4/3

×
[
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u2
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u
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+ 9(Λ2 − 1)

]
, (B 3)
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Appendix C. Existence of instabilities of the classical Rayleigh–Plesset
equation for bubble dynamics in cavitating nozzle flow

We, herein, demonstrate the existence of instabilities of the model equations (19)–
(23) for Λ = 1 (nozzle flow equations coupled to the classical Rayleigh–Plesset
equation for spherical bubble dynamics). For this reason, we first consider the Blake
stability for mechanical equilibrium. Since all bubbles at the nozzle inlet with radii R′0
are assumed to be in mechanical equilibrium, it follows from the classical Rayleigh–
Plesset equation that this equilibrium state is stable if R′0 < R′B and, otherwise,
unstable where R′B is the Blake radius defined by (for details see, e.g. Brennen 1995)

R′B =

[
3kR′ 30 p

′
g0

2S ′

]1/2

. (C 1)

This equilibrium stability condition can be stated as

RB ≡ R′B
R′0

= 1
2

[k(12 + 3σ0WeR0)]
1/2 > 1. (C 2)

Since σ0 and WeR0 are both positive and k > 1, it follows that the equilibrium state at
the nozzle inlet is a stable one. We can now extend this equilibrium stability condition
to apply locally at any location along the nozzle axis. Let R′E be a fictitious bubble
radius (with dR′E/dt′ = d2R′E/dt′ 2 = 0) defined by the local equilibrium condition

p′v − p′ + p′g − 2 S ′

R′E
= 0 (C 3)

at any location along the nozzle axis (this implies that p′v +p′g > p′, which presumably
holds for cavitating flows). Consider a fictitious change of state where the gas expands
from this fictitious local equilibrium state polytropically according to p′g(R′E/R′)3k with
constant mass holding p′v and p′ fixed at their local values for an arbitrarily small
virtual variation of the bubble radius

R′ = R′E (1 + ξ) (C 4)

with |ξ| � 1. Now by substituting for R′ from (C4) into the Rayleigh–Plesset equation
(6) with ν ′D = ν ′̀ and by using (C3) (e.g. see Brennen 1995, chapter 2), we obtain for
small values of ξ

R′
d2R′

dt′ 2
+

3

2

(
dR′

dt′

)2

+
4ν ′̀

R′
dR′

dt′
=

ξ

ρ′̀

[
2 S ′

R′E
− 3kp′g

]
. (C 5)

The right-hand side has the opposite sign as ξ if

p′g >
2S ′

3kR′E
, (C 6)

which is the condition for local equilibrium stability. Now the real bubble radius
R′ at this fixed location of the nozzle, attained by the nozzle area variation, can
deviate only slightly from the fictitious local equilibrium value R′E if local stability is
to be satisfied (otherwise, the flow field will be locally unstable). Therefore, the local
stability condition can be approximated by

p′g >
2S ′

3kR′
. (C 7)
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Substituting for p′g from p′g = p′g0(R
′
0/R

′)3k , we obtain the local stability condition

R <

(
3kp′g0R

′
0

2S ′

)1/(3k−1)

= R
2/(3k−1)
B , (C 8)

where RB is given by (C2). For isothermal flow (k = 1), (C8) reduces to the Blake
stability condition

R < RB. (C 9)
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